Voluntary copper industry initiatives
The European copper industry’s products will contribute towards sustainable economic growth within the EU, as well as enhance the quality of the everyday lives of its citizens.
In this section, you can read about the voluntary copper industry initiatives on sustainability, the proactive efforts with regard to environmental protection and the health and safety of its workers, plus studies on the environmental impacts of using, and then recycling, copper products.
Copper Voluntary Risk Assessment
This comprehensive assessment, completed by the copper industry in 2008, covers the production, use and end-of life aspects of the copper value chain. It shows that the existing legislative framework generally safeguards Europe’s environment, the health of industry workers and the general public.
Following extensive review, the risk assessment was agreed by the European Commission’s Technical Committee for New and Existing Substances. The Commission’s Scientific Committee on Health and Environmental Risk (SCHER) also performed an evaluation and further endorsed the conclusions on the environmental and human health risk characterisations.
In March 2009, the conclusions of this initiative were endorsed by the EU authorities and the Copper Voluntary Risk Assessment was the first industry report published on the website of the European Chemical Agency (ECHA). Read more.
The environmental profile of copper products through a ‘Cradle-to-Grave’ life cycle assessment
Improving the environmental performance of products, along with enhancing sustainability throughout the supply chain, has gained significantly in importance in recent years, both for consumers and industries.
In parallel, EU initiatives, such as the Sustainable Consumption and Production Action Plan, foster greater resource efficiency and innovation in more environmentally-friendly products. Moreover, in 2015 ECI and several of its fabricating member companies volunteered to the European Commission’s Product Environmental Footprint project initiated with the aim of developing a harmonized environmental footprinting methodology that can accommodate a broader suite of relevant environmental performance criteria.
Responding to requests from end-users and regulators, along with the industry’s own sustainable development goals, the copper industry has, since 2000, completed increasingly rigorous life cycle assessments (LCA) on the production of the main semi-finished copper products (tube, wire and sheet). Read more.
Transport regulations by the International Maritime Organization
The International Maritime Organization (IMO) issues regulations that ensure safe, secure and efficient shipping on clean oceans. The European Copper Institute assists the copper sector to comply with the provisions related to the shipment of copper concentrates in bulk. We have developed guidance to help shippers of copper concentrates assess whether their cargo meets the criteria for:
- “Harmful to the Marine Environment” (HME) under Annex V of the MARPOL Convention, and
- “Materials Hazardous only in Bulk” (MHB) under the International Maritime Solid Bulk Cargoes (IMSBC) Code.
Emissions from the European copper industry are on a downward trend
The Industrial Emissions Directive (IED) aims to protect humans and the environment by reducing industrial emissions. The copper industry supports this objective, and has actively contributed to the development of the Best Available Techniques (BAT) reference document for the nonferrous metals sector. The IED is a success: it has triggered significant investments in on-site treatment facilities by the sector, and has resulted in serious emission reductions over the past decade. Read more.
Using copper outdoor structures in environmentally sensitive areas
So that copper outdoor structures can be used in environmentally sensitive areas, a model has been prepared to aide architects to understand interactions between their building project and the surrounding areas. By combining laboratory and field exposures based on a multi-analytical and cross-disciplinary research approach, a runoff rate model has been developed to enable predictions of runoff rates for specific designs or areas. The model considers the importance of the annual concentration of sulphur dioxide in the air, the average rain pH, the annual rainfall quantity, and the degree of surface inclination on the runoff rate process. Read more.